Hale School Year 12 Semester 1 Examination, 2017 Write your name below: # Yr12 ATAR CHEMISTRY UNIT 3 Circle your teacher's initials: JWZ JJF KF AD TIME ALLOWED FOR THIS PAPER Reading time before commencing: Working time for paper: Ten minutes Three hours | For Examiners only | | | |--------------------|--|--| | Section 1 | | | | Section 2 | | | | Section 3 | | | | Total | | | MATERIAL REQUIRED/RECOMMENDED FOR THIS PAPER TO BE PROVIDED BY THE SUPERVISOR This Question/Answer booklet for Sections 1 & 2. A separate Question/Answer booklet for Section 3. A separate Multiple Choice Answer sheet for Section 1. A Chemistry Data Sheet. TO BE PROVIDED BY THE CANDIDATE Standard Items: Pens, pencils, eraser, ruler Special Items: A calculator satisfying the conditions set by the Curriculum Council, and a '2B' pencil for the separate Multiple Choice Answer sheet. IMPORTANT NOTE TO CANDIDATES No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a nonpersonal nature in the examination room. Please check carefully, and if you have any unauthorised material with you, hand it to the supervisor BEFORE reading any further. #### INSTRUCTIONS TO CANDIDATES This paper consists of **THREE SECTIONS** as follows: **SECTION 1** contains **25 questions worth 2 marks each.** It is the multiple choice section. Answer **ALL** questions in Section 1 on the Separate Multiple Choice Answer Sheet. Use a **'2B' PENCIL**. **DO NOT USE A BALL POINT OR INK PEN**. If you consider that two or more of the alternative answers are correct then select the BEST alternative. Marks will **NOT** be deducted for incorrect answers. This part is worth 50 marks and should take about 50 minutes. ### Do not use pencil for Sections 2 & 3. <u>SECTION 2</u> contains 10 short answer questions. You should answer ALL the questions. The answers are to be written in the spaces provided in this Examination booklet. This part is worth 70 marks and should take about 60 minutes. <u>SECTION 3</u> contains 5 extended response and calculation questions. You should answer ALL the questions in detail in the separate question/answer booklet provided. This part is worth 80 marks and should take about 70 minutes. At the end of the examination make sure that your <u>name</u> is on this Examination paper, the separate Question/Answer Booklet for Section 3 and your Multiple Choice Answer Sheet. SPECIAL INSTRUCTIONS #### Chemical Equations For full marks, chemical equations should refer only to those species consumed in the reaction and any new species produced. These species may be **ions** [for example Ag⁺(aq)], **molecules** [for example NH₃(g), NH₃(aq), CH₃COOH(l), CH₃COOH(aq)] or **solids** [for example BaSO₄(s), Cu(s), Na₂CO₃(s)]. ### Structure of this paper | Section | Number of questions available | Number of questions to be answered | Suggested
working time
(minutes) | Marks
available | Percentage of exam | |-----------------------------------|-------------------------------|------------------------------------|--|--------------------|--------------------| | Section One:
Multiple-choice | 25 | 25 | 50 | 50 | 25 | | Section Two:
Short answer | 10 | 10 | 60 | 70 | 35 | | Section Three:
Extended answer | 5 | 5 | 70 | 80 | 40 | | | | | | Total | 100 | ## Section One: Multiple-choice 25% (50 marks) This section has **25** questions. Answer **all** questions on the separate Multiple-choice Answer Sheet provided. Use a '2B' PENCIL. DO NOT USE A BALL POINT OR INK PEN. If you consider that two or more of the alternative answers are correct then select the BEST alternative. Marks will NOT be deducted for incorrect answers. This part is worth 50 marks and should take about 50 minutes. - 1. The pH of a solution was measured with a pH meter during a titration, and was observed to decrease from 4.0 to 2.0. Which of the following statements about the hydrogen ion concentration in the solution is correct? - (a) It doubled. - (b) It decreased by half. - (c) It increased by a factor of 100. - (d) It decreased by a factor of 100. - 2. The following statements refer to the chemical reaction between magnesium carbonate granules, (MgCO₃) and a dilute hydrochloric acid solution, (HCl). Which one of the following statements about this reaction is FALSE? - (a) The rate of the reaction decreases with increasing time. - (b) The rate of reaction increases with increasing initial temperature. - (c) The rate of reaction increases with increasing initial concentration of HCl (aq). - (d) The initial rate of reaction is independent of the state of sub-division of MgCO₃ (s). - 3. Which one of the following statements about the following reversible reaction is TRUE? $$2SO_2\left(g\right) \quad + \quad O_2\left(g\right) \qquad \rightleftharpoons \qquad 2SO_3\left(g\right)$$ (a) $$K = \frac{[SO_2]^2 [O_2]}{[SO_3]^2}$$ - (b) K is constant under all reaction conditions. - (c) Sulfur trioxide is being formed when the reaction is at equilibrium. - (d) A catalyst increases the yield of sulfur trioxide by increasing ∆H. - 4. In which of the following reactions at equilibrium and at constant temperature is there a shift to the "left" if the pressure of the closed system is increased? - (a) $2NO_2(g) \Rightarrow N_2O_4(g)$ - (b) $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$ - (c) $H_2O(g) + C(s) \rightleftharpoons H_2(g) + CO(g)$ - (d) $H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$ (b) (c) (d) 5. Which choice correctly describes the properties of aqueous solutions of the following salts? | Sodium ethanoate (NaCH₃COO) | Potassium nitrate
(KNO ₃) | Ammonium chloride (NH ₄ Cℓ) | |-----------------------------|--|--| | neutral | acidic | basic | | basic 🗶 | neutral¥ | × acidic | | acidic | neutral × | basic | | basic × | acidic | neutral | 6. Consider the buffer solution represented by the chemical reaction below: $$H_2PO_4^-(aq) + H_2O(\ell) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq)$$ Which of the following would be **true** after the addition of a small volume of 2.0 mol L⁻¹ sodium hydroxide solution to the buffer solution? - (a) The forward reaction rate would be unaffected. ✓ - (b) The concentration of H₂PO₄⁻ (aq) present in the system would increase. × - (c) The pH of the system would decrease. X - (d) The equilibrium would shift to the right. - 7. In which one of the following reactions is water **not** acting as a Brønsted-Lowry acid or base? (a) $$HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$$ - (b) $CO_2(s) + H_2O(\ell) \Rightarrow H_2CO_3(aq)$ - (c) $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ - $\text{(d)} \qquad CO_3{}^{2-}(aq) \quad + \quad H_2O(\ell) \quad \rightleftharpoons \quad HCO_3{}^-(aq) \quad + OH^-(aq)$ - 8. Which one of the following combinations will **not** form a buffer solution? - (a) HNO₃(aq) / NO₃⁻(aq) - (b) $H_2PO_4^-(aq) / HPO_4^{2-}(aq)$ - (c) $NH_3(aq) / NH_4C\ell (aq)$ - (d) $H_3PO_4(aq) / H_2PO_4^-(aq)$ ## Questions 9, 10 and 11 relate the following information: A student was asked to determine the concentration of a solution of ethanoic acid that had a concentration of approximately 0.400 mol L⁻¹. He pipetted 20.0 mL of a 0.500 mol L⁻¹ solution of sodium hydroxide into a conical flask, and titrated the ethanoic acid against the standardised sodium hydroxide solution, using phenolphthalein as the indicator. - 9. What is the pH of the sodium hydroxide solution at the start of the titration? - (a) 13.7 - (b) 7.00 - 14.0 (c) - (d) 12.7 - [OH] = 0-500 [H] = 2x18-14 PH = -log[] - 10. If the ethanoic acid was added until it was slightly in excess, which of the following pH graphs would show the variation of pH during the titration? - (a) рН 14 7 Volume of acid Volume of acid added added Hq 14 7. Volume of acid - (b) рН 14 7 - added (d) pH 14 7 Volume of acid added - 11. What approximate volume of ethanoic acid would the student expect to have added at the end point of the titration? - 20 mL (a) - 30 mL - 25 mL - 35 mL = 0.5×0-02 12. Which one of the following correctly arranges 1.0 mol L⁻¹ solutions of the substances in order of increasing pH? | | stb | 6 | n | Wka | sta | |-----|--------------------------------|----------------------------------|-------------------------------------|--------------------------------|------| | (a) | NaOH | NaCH ₃ COO | NH ₄ CH ₃ COO | H ₂ CO ₃ | HCl | | (b) | H ₂ CO ₃ | HCl | NH ₄ CH ₃ COO | NaCH ₃ COO | NaOH | | (c) | HCl / | H ₂ CO ₃ / | NaCH ₃ COO | NH₄CH₃COO | NaOH | | (c) | HCℓ ✓ | H ₂ CO ₃ / | NH₄CH₃COO ✓ | NaCH₃COO/ | NaOH | 13. Consider the table below showing the colour changes of a range of indicators. | | | Colour change | | |------------------|----------|---------------|--------| | Indicator | pH range | Acid | Alkali | | methyl orange | 3.1-4.4 | red | yellow | | bromothymol blue | 6.0-7.6 | yellow | blue | | phenolphthalein | 8.3-10.0 | colourless | pink | | litmus | 5.5-8.8 | red | blue | Which one of the following indicators should be used when titrating a solution of ammonia with hydrochloric acid? - (a) phenolphthalein (b) methyl orange - (c) bromothymol blue × - (d) litmus K - 14. During an acid-base titration, which one of the following would result in a random error? - (a) Inconsistent reading of the volume of solution in a burette. - (b) Using the incorrect mass when making up a standard solution. - (c) Rinsing the conical flask with distilled water before use. - (d) Rinsing the pipette with distilled water immediately before use. - 15. Consider the equilibrium system below: $$H_2O(\ell)$$ + $HSO_4^-(aq)$ \rightleftharpoons $SO_4^{2-}(aq)$ + $H_3O^+(aq)$ Which one of the following statements is false? - (a) HSO_4^- is the conjugate acid of SO_4^{2-} . - (b) HSO₄⁻ is acting as an acid. - (c) Addition of base will favour the reverse reaction. - (d) The system could act as a buffer. - 16. An experiment is set up to electroplate an antique brass spoon with silver. Which of the following statements describes how the experiment should be set up? - (a) The cathode is made of silver and the spoon is the anode. X - (b) The spoon is the cathode and the electrolyte is a solution of silver nitrate. - (c) The spoon is the anode and the electrolyte is a solution of copper sulfate. - (d) The cathode is made of silver and the electrolyte is a solution of silver nitrate × - 17. How many moles of electrons are required when the following half-equation is balanced using the smallest possible coefficients? IL + 6420 -> 2103 + 124+ 150 $$I_2(s)$$ + $H_2O(\ell)$ \rightleftharpoons $IO_3^-(aq)$ + $H^+(aq)$ + e^- - (a) 2 - (b) 5 - (c) 10 - (d) 12 - 18. Which one of the following statements **BEST** describes the function of an anode in an electrolytic cell? - (a) The anode is the electrode at which reduction occurs. ★ - (b) The anode is the only electrode at which OH (aq) ions are produced. - (c) The anode is the electrode which attracts positive ions. - (d) The anode is the electrode that is oxidised. - 19. In which one of the following processes is the oxidation number of chlorine being increased by 2? - (a) $PC\ell_3 + C\ell_2 \rightarrow PC\ell_5$ - (b) $C\ell_2 + H_2O \rightarrow C\ell^- + HC\ellO + H^+$ - (c) $2 \operatorname{Cl}^- + 2 \operatorname{e}^- \to \operatorname{Cl}_2$ - (d) $ClO_3^- + H_2O_2 \rightarrow ClO_4^- + H_2O_4$ - 20. Which one of the following pairs of chemicals will undergo a spontaneous redox reaction? - (a) solid iodine and water - (b) solid lead and liquid bromine - (c) lead nitrate solution and potassium iodide solution. - (d) solid copper and a 1.0 mol L⁻¹ solution of hydrochloric acid. ## Questions 21, 22 and 23 relate to the following electrochemical cell at 25°C: 21. Which of the following reactions will occur during the normal operation of this cell? (a) $$2Ag^{+}(aq) + Zn(s) \longrightarrow 2Ag(s) + Zn^{2+}(aq)$$ (b) $2Ag^{+}(aq) + Zn(s) \longrightarrow 2Ag(s) + Zn^{2+}(aq)$ (c) $Zn^{2+}(aq) + 2Ag(s) \longrightarrow Zn(s) + 2Ag^{+}(aq)$ (d) $Zn^{2+}(aq) + 2Ag(s) \longrightarrow Zn(s) + 2Ag^{+}(aq)$ (e) $Zn^{2+}(aq) + 2Ag(s) \longrightarrow Zn(s) + 2Ag^{+}(aq)$ (f) $Zn^{2+}(aq) + 2Ag(s) \longrightarrow Zn(s) + 2Ag^{+}(aq)$ (g) $E^{\circ} = 0.04 \text{ V}$ - 22. Which of the following statements about the two electrodes is correct? - (a) The mass of the silver electrode will decrease. ⊀ - (b) The zinc electrode is the cathode.X - (c) The mass of the zinc electrode will decrease. - (d) The silver electrode is the anode. K - 23. Which of the following statements about the flow of charge is INCORRECT? - (a) Electrons will flow from the zinc electrode to the silver electrode through the external √ circuit. - (b) Cations will flow through the salt bridge towards the silver half-cell. - (c) Electrons will flow from the silver electrode to the zinc electrode through the salt × bridge. - (d) Anions will flow through the salt bridge towards the zinc half-cell. 24. The overall redox reaction occurring in a dry cell, (Leclanché cell), is shown below. $$Zn(s) + 2 NH_4^+(aq) + 2 MnO_2(s) \longrightarrow Zn^{2+}(aq) + Mn_2O_3(s) + H_2O(\ell) + 2NH_3(aq)$$ Which of the following statements regarding the dry cell are correct? - The zinc outer casing is acting as the anode. - II The oxidation state of manganese decreases from +4 to +3. ✓ - III Ammonium chloride acts as an electrolyte for the cell. - (a) I and III only. - (b) I and II only. - (c) II and III only. - (d) I, II and III. - 25. Consider the following statements about fuel cells. - A fuel cell converts chemical energy to electrical energy via a redox reaction. - If Fuel cell technology involves the continuous supply of reactants to the cells and the continuous removal of the products. - III A fuel cell can be recharged by reversing the direction of current flow through the cell. × - IV Fuel cells are considered a low-emission technology. Which of the above statements about fuel cells are true? - (a) I only - (b) I and II - (c) I, III and IV - (d) I, II and IV End of section one Section Two: Short answer 35% (70 Marks) This section has **ten (10)** questions. Answer **all** questions. Write your answers in the spaces provided. When calculating numerical answers, show your working or reasoning clearly. Express numerical answers to the appropriate number of significant figures and include appropriate units where applicable. Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer. - Planning: If you use the spare pages for planning, indicate this clearly at the top of the page. - Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page. Suggested working time: 60 minutes. Question 26 (4 marks) Write observations for any reactions that occur in the following procedures. In each case describe in full what you would observe, including any: - colours - odours - precipitates (give the colour) - gases evolved (give the colour or describe as colourless). If no change is observed, you should state this. (Note: No chemical equations necessary). | (a) | Some hydrochloric acid solution is mixed with solid sodium carbonate. (2 marks) | |-----|---| | | White solid dissolves in a clear colordess solution () | | | Bubbles of a colourless, adourless gas and clear, [| | | coloviless solution. | | | | (b) Some solid copper (II) hydroxide is mixed with a dilute nitric acid solution. (2 marks) Produces a line solution () **Question 27** (4 Marks) The following chemical equation represents an unbalanced redox reaction. $$MnO_{4}^{-}\,(aq) \ + \ C_{2}O_{4}{}^{2-}\,(aq) \ \to \ Mn^{2+}\,(aq) \ + \ CO_{2}\,(g)$$ In the appropriate spaces below, write the two separate half-equations and the overall balanced redox equation. (4 marks) Oxidation: Reduction: Overall Redox: **Question 28** (6 marks) Bromine water, which is a dilute aqueous solution of bromine in water, is slightly acidic because of its reaction with water, represented by the following equation: $$Br_2(aq) + H_2O(\ell) \Rightarrow HBrO(aq) + H^+(aq) + Br^-(aq)$$ In aqueous solution, bromine, Br₂ (aq) is brown. Hypobromous acid, HBrO (aq), and bromide ions, Br - (aq) are both colourless. State and explain the colour changes that would be observed, if the following changes are made to the system at equilibrium. (a) Addition of NaOH (ag). (3 marks) Colour: KOWN (d)OUR comses a decrease in 1 reaction increases relative to the reverse (b) Addition of excess HCl (aq). (3 marks) Brown colour becomes more intense comses on increase moreases Question 29 (10 Marks) Explain how you could distinguish between the following pairs of compounds using chemical tests. For each test, write one equation for a reaction that occurred. | | Compounds | Description of Test | Observations | |-----|-----------|---------------------------|--| | | NH₄Cl(aq) | Add an O aqueous solution | with NH4Cl(aq): | | (a) | MgCl₂(aq) | OH, PO4, CO3 | with MgCl2(aq): | | | Equation: | Mg(a)+ 20H(| , , | | | Sn(s) | Add an O | with Sn(s) | | (b) | Zn(s) | Fer/Nit/Cat
of/ etc. | with Zn(s) Zinc dissolves / coated Lith black grey layer / C colour of solution foodes. | | | Equation: | = 2+ Zn => | Zn27 Fe (s) 2 | Question 30 (13 marks) This question relates to the following reaction: $$2 \text{ NO}_2(g) \rightleftharpoons \text{ N}_2\text{O}_4(g) + \text{HEAT}$$ The gases are contained in a sealed vessel with a fixed volume, which is strong enough to resist changes in pressure and temperature without breaking. (a) Complete the table by using Le Chatelier's principle or collision theory, as appropriate, to predict the effect on the position of equilibrium (shifted to the right/left/unchanged) of the following imposed changes once equilibrium is re-established. In each case explain your reasoning. One has been partially completed for you. (8 marks) | Imposed
change | Effect on equilibrium position | Reasoning | |---|--------------------------------|---| | Increased temperature | Shifted to the left | The system opposes the increase in temperature by favouring the reverse endothermic reaction, which will decrease the temperature of the system. | | Additional nitrogen dioxide gas is added to the system | Shifted to the right | The system opposes the increase in concentration of NO ₂ by favouring the forward reaction. Or (better): The rate of the forward reaction is increased due to the increase in concentration of the NO ₂ (higher rate (frequency) of collision of NO ₂ molecules) and so the greater formation of N ₂ O ₄ . The rate of the reverse reaction is not initially affected. | | Neon gas is
added to the
system (fixed
volume) | No change | The addition of the neon (an inert gas) does not affect the concentrations / partial pressures of the reacting gases therefore there is no change to the position of equilibrium / rate of the forward and reverse reactions. | | Description | Marks | |--|-------| | Predictions | 0-2 | | xplanations (2 marks each). Note : in the second scenario award only 1 ark for reference to LCP alone | | | Total | 8 | (b) A mixture of the gases was place into a syringe that allowed for the volume of the system to be changed. The partial pressures of the gases were measured and plotted on the graph below. $$2\;NO_2(g)\;\rightleftharpoons\;\;N_2O_4(g)\;+\;HEAT$$ - After 2 minutes, the volume of the syringe was reduced. The system took one minute to reestablish equilibrium. - 1 minute after this time, approximately half of the NO₂ was removed from the system. This time it took 2 minutes to return to a state of equilibrium. Complete the following graph showing the changes to the partial pressures of nitrogen dioxide and dinitrogen tetroxide during this time. (5 marks) | Description | Marks | |---|-------| | Initial change at 2 minutes (both partial pressures increase) | 1 | | NO ₂ decrease as N ₂ O ₄ increase | 1 | | NO ₂ instantaneous drop at 4 mins but no instantaneous change to N ₂ O ₄ | 1 | | NO_2 rising between 4 and 6 minutes, N_2O_4 falling | 1 | | NO ₂ changing half as much as N ₂ O ₄ between 2 and 3, and 4 and 6 min | 1 | | Total | 5 | Question 31 (6 Marks) Below is a representation of an electrochemical cell, which involves the reaction of hydrogen and chlorine gases: (a) Give the half equation for the reactions occurring at the anode and at the cathode, and then write an overall balanced redox equation for the reaction occurring in the cell. | Cathode half-equatio | + 2e -> 2CT () E°= +1.36V | |----------------------|---------------------------| | Anode half-equation: | → 2Ht + 2e OE° = 0.00V | | Overall equation: | + 0 | | C)2 + | H2 > 2CT + 2H' (1) | (3 marks) (b) Using the standard reduction potential values from the data sheet, calculate the maximum theoretical voltage (e.m.f.) that could be produced by this cell. (1 mark) (c) Show the direction of the flow of electrons in the external circuit by means of an **arrow**, "(→)" in the diagram above. (1 mark) Suggest a reason why platinum is used for the electrodes. (d) | Platinum is ment so will not take part in reaction | |---| | OR Allows for electron transfer into halfcell. | | Question 32 (9 Marks) | | Use the Standard Reduction Potentials from your Data Booklet to answer the following questions. In each case, write all relevant half-equations with their respective E° values. (If the reaction is likely to occur, write an overall balanced redox equation with the resultant cell voltage). Then you must state clearly if the reaction is <u>likely or unlikely to occur</u> as described. | | (a) A piece of aluminium metal is placed in a 1.00 mol L ⁻¹ nickel nitrate solution. $ 2x (A) \rightarrow A^{3+} + 3e \qquad (3 \text{ marks}) $ $ 3x (N^{2+} + 2e \rightarrow N) \qquad E^{0} = -0.24V $ $ 2AI + 3N^{2+} \rightarrow 2AI^{3+} + 2NI \qquad Ecoll = +1.44V $ $ Positive EMF Ecoll : Mill occur() $ | | (b) Silver metal is added to a 1.00 mol L ⁻¹ sulfuric acid solution. | | $2\times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = 0.00V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = 0.00V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = 0.00V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ $2 \times (Ag \rightarrow Ag + e) \qquad E^{\circ} = -0.80V (D)$ | | Iron(II) nitrate solution is added to a solution of hydrogen peroxide. $ \frac{2x(Fe^{2t} \rightarrow Fe^{3t} + e)}{Fe^{3t} + e} = \frac{2x(3 \text{ marks})}{Fe^{3t} + 2h} $ | (1 mark) Question 33 (8 marks) The two initial reactions involved in the wet corrosion of iron are shown below. Both of these reactions are reversible. Oxidation (anode) reaction: Reduction (cathode) reaction: $\begin{array}{lll} Fe(s) \; \rightleftarrows \; Fe^{2^+}\!(aq) \; + \; 2\; e^- \\ O_2(g) \; + \; 2\; H_2O(\ell) \; + \; 4\; e^- \; \rightleftarrows \; 4\; OH^-\!(aq) \end{array}$ (a) Combine these two half equations to write a balanced overall redox reaction for the process. (2 marks) Use your knowledge of chemical equilibrium to predict whether iron will corrode more (b) quickly in water that is slightly acidic or water that is slightly basic. Justify your reasoning. (3 marks) Water tanks made of steel (an alloy containing a mixture of iron and carbon), can be (c) protected from corrosion by connecting a 'sacrificial' anode made of zinc to the inside of the tank. With reference to the standard reduction potentials of iron and zinc, explain how this reduces the corrosion of iron in the tank. (3 marks) Question 34 (5 marks) The following diagram represents a hydrogen fuel cell. (a) Write the overall redox equation, including state symbols, for the reaction occurring in this cell. (2 marks) (b) Explain the role of the electrolyte in this fuel cell. (2 marks) (c) Explain one environmental advantage of using fuel cells to power vehicles compared to using a fossil fuel. (1 mark) | Question 35 | (5 marks) | |-------------|-------------| | | 15 Illainsi | (a) Calculate the pH of a solution of 0.0200 mol L⁻¹ sodium hydroxide. (2 marks) (b) 30.0 mL of 0.0200 mol L⁻¹ sulfuric acid was added to 30.0 ml of the sodium hydroxide described in part (a). Calculate the pH of the resulting solution (assume that the sulfuric acid fully ionizes). $n(OH) = C.V = 0.0200 \times 0.030 = 6.00 \times 10^{-6} \text{m}$ $n(H_2SO_4) = C.V. = 0.0200 \times 0.030 = 6.00 \times 10^{-6} \text{m}$ $n(H_2SO_4) = C.V. = 0.0200 \times 0.030 = 6.00 \times 10^{-6} \text{m}$ $n(H^{\dagger}) = 2 \times n(H_2SO_4) = 1.20 \times 10^{-3} \text{mol}(2)$ $n(H^{\dagger}) = 2 \times n(H_2SO_4) = 1.20 \times 10^{-3} - 6.00 \times 10^{-4}$ = 0.0006 mol End of section two ## Hale School Semester One Examination, 2017 | Write your name below: | , | |------------------------|---| | Write your name below. | | | | | | | | | | | # Yr12 ATAR CHEMISTRY UNIT 3 | JWZ | AD | JJF | KF | | |-----|----|-----|----|--| | | | | | | | | | | | | Section 3 Question and Answer Booklet. | For Examine | rs only | |-------------|---------| | Part 3 | | # Hale School Semester One Examination, 2017 # Yr12 ATAR CHEMISTRY UNIT 3 | JWZ | AD | JJF | KF | | |-----|----|-----|----|---| | | | | | J | # Section 3 Question and Answer Booklet. | For Examine | rs only | | |-------------|---------|--| | Part 3 | | | Section Three: Extended answer 40% (80 marks) This section contains five (5) questions. You must answer all questions. Write your answers in the spaces provided. Where questions require an explanation and/or description, marks are awarded for the relevant chemical content and also for coherence and clarity of expression. Lists or dot points are unlikely to gain full marks. Final answers to calculations should be expressed to the appropriate number of significant figures. Additional working space pages at the end of this Question/Answer booklet are for planning or continuing an answer. If you use these pages for planning, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page. Suggested working time: 70 minutes. Question 36 (19 marks) Human blood contains a buffer of carbonic acid (H₂CO₃) and bicarbonate anion (HCO₃·) in order to maintain blood pH between 7.35 and 7.45. This buffer can be represented as shown below. $$H_3O^+(aq) + HCO_3^-(aq) \Rightarrow H_2CO_3(aq) + H_2O(l)$$ - (a) Using the example above, - (i) describe the action of a buffer. (2 marks) | Description | Marks | |---|-------| | A buffer maintains a steady pH | 1 | | When a small amount of acid or base is added to a solution, a chemical reaction with components of the buffer occur | 1 | | Total | 2 | (ii) explain the term "buffering capacity". (3 marks) | Description | | |---|---| | A buffer contains a certain amount of the conjugate base and the weak acid | | | When either of these are used up the solution ceases to function as a buffer (it has reached the limit of its buffering capacity) | 1 | | The amount of these ions present in the buffer solution determines the buffering capacity | 1 | | Total | 3 | (b) Explain, using equations, why this system buffers the blood. (4 marks) | Description | Marks | |---|-------| | When extra hydrogen ions are added (pH decreases), the forward reaction is favoured $H_3O^+(aq) + HCO_3^-(aq) \rightarrow H_2CO_3(aq) + H_2O(\ell)$ | | | This opposes the increase in H ₃ O ⁺ ions | 1 | | When extra hydroxide ions are added (pH increases), the reverse reaction is favoured: $H_2CO_3(aq) + OH^-(aq) \rightarrow H_2O(aq) + HCO_3^-(aq)$ | 1 | | This opposes the increase in OH ⁻ ions | 1 | | Total | 4 | The carbonic acid can also decompose into carbon dioxide gas and water, resulting in a second equilibrium system between carbonic acid and water: $$H_2CO_3(aq) \rightleftharpoons H_2O(\ell) + CO_2(q)$$ (c) Use this equation, and the earlier equation that represents the buffer, to explain the changes in blood pH caused by an increase in the concentration of carbon dioxide in the blood. (4 marks) | Description | Marks | |--|-------| | When [CO ₂] increases the [H ₂ CO ₃] increases | 1 | | As the reverse reaction is favoured | 1 | | This causes the reverse reaction here to be favoured:
$H_3O^+(aq) + HCO_3^-(aq) \Rightarrow H_2CO_3(aq) + H_2O(\ell)$ | 1 | | This increasing the [H ₃ O ⁺] and reducing the pH of the blood | 1 | | То | tal 4 | (d) In human blood, oxygen is transported by combining with haemoglobin according to the following reversible reaction to form oxyhaemoglobin that travels around the body: $$HAEMOGLOBIN(aq) + O_2(g) \rightleftharpoons OXYHAEMOGLOBIN(aq)$$ "An increase in the acidity of blood causes this equilibrium to shift towards the left, thus releasing oxygen from the oxyhaemoglobin molecules, which allows for cell respiration to provide energy". Suggest, with an explanation, how an increase in carbon dioxide levels during exercise would affect the concentration of haemoglobin in blood. (2 marks) | Description | Marks | |--|-------| | During exercise, blood CO ₂ levels increase will decrease blood pH and thereby cause an equilibrium shift to de-oxygenate oxyhaemoglobin (i.e. equilibrium shift to the left) | 1 | | Therefore the concentration of haemoglobin in blood will increase | 1 | | Total | 2 | (e) Buffers can be used to maintain pH in a range of situations, including for scientific research. For example, when preparing biological samples for electron microscopy a buffer of the monoprotic cacodylic acid ($C_2H_7AsO_2$) and its conjugate base is used. Write an equation to show the equilibrium system for this buffer and describe how the system will respond to an **increase** in pH. (4 marks) | Description | Marks | |---|-------| | $H_3O^+(aq) + C_2H_6AsO_2^-(aq) \Rightarrow C_2H_7AsO_2(aq) + H_2O(\ell)$ | 1 | | When the pH increases the [OH-] increases | 11 | | The extra OH ⁻ ions react with the cacodylic acid: | 1 | | $C_2H_7AsO_2(aq) + OH^-(aq) \rightarrow H_2O(aq) + C_2H_6AsO_2^-(aq)$
Which opposes the increase in pH | 1 | | Total | 4 | Question 37 (14 marks) The electroplating of various metals plays an extremely important role in industry. These reactions can be carried out on a small scale in the laboratory using standard laboratory equipment. A typical spoon can be chrome electroplated utilising a chromium electrode and an acidified aqueous chromium nitrate solution. Using a labelled diagram, explain the process involved in electroplating the spoon. Your answer should pay particular attention to the following areas: - (a) How the cell can be constructed. (A diagram with clear labels for the anode, cathode, electrolyte, direction of flow of electrons and ions). (6 marks) - (b) Describe the processes occurring at each electrode. (Including half-equations). (4 marks) - (c) Observations made at each electrode. (2 marks) - (d) The role of the electrolyte. (1 mark) - (e) An example for the industrial importance or application of the process. (1 marks) (b) At the cathode, the negative terminal of the cell provides electron for the reduction of chromium ions to chromium metal being deposited on the spoon. (1) $$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$$ (1) At the anode, the positive terminal of the cell ensures the oxidation of the chromium electrode to produce chromium ions in solution. (1) $$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$$ (1) - (c) At the cathode, the mass of the spoon will increase. (1) - At the anode, the mass of the electrode will decrease. (1) - (d) The electrolyte allows the transfer of ions; ie. (Cr³+) cations towards the cathode and (NO₃⁻) nitrate ions towards the anode, in order to balance the charges during the normal operation of the cell. (1) - (e) Industrial importance of electrolysis includes the coating of a cheap metal with a more noble metal, ie. Jewellery, etc. Or for the coating of iron and other reactive metals with a corrosion resistant metal such as chromium, etc. *Accept any "one" realistic application! (1) Question 38 (10 marks) Compare and contrast electrolytic and galvanic cells. In your answer include similarities and differences between the two types of electrochemical cells in relation to energy, anodes and cathodes, electrode potentials, and the spontaneity of reactions. Illustrate your answer with examples of your choice. Include equations and clear, labelled diagrams. | Description | Marks | |---|-------| | Suitable examples of an electrolytic and galvanic cell | 0–2 | | Comparison of energy (galvanic cells: chemical energy to electrical energy, electrolytic cells: electrical energy to chemical energy) | 0–2 | | Electrodes: Anode = oxidation; Cathode = Reduction | | | Galvanic cells: Anode (-) Cathode (+) | 0–1 | | Electrolytic cells: Anode (+) Cathode (-) | | | Galvanic cells: Spontaneous reactions (positive cell potentials) | | | Electrolytic cells: Allow non spontaneous reactions to occur by overcoming | 0–2 | | negative (or zero) cell potentials | | | Quality of diagrams | 0–1 | | Use of equations | 0–2 | | Total | 10 | Question 39 (14 marks) When soils containing iron pyrite (FeS₂) are exposed to air, the following reaction can occur. $$2 \text{ FeS}_2(s) + 7 \text{ O}_2(g) + 2 \text{ H}_2\text{O}(\ell) \rightarrow 2 \text{ Fe}^{2+}(ag) + 4 \text{ SO}_4^{2-}(ag) + 4 \text{ H}^+(ag)$$ These types of soils are called acid sulfate soils. The pH of groundwater in these soils will decrease. If this groundwater discharges into lakes and rivers it will also cause their pH to decrease. (a) Explain how this reaction causes the pH of groundwater to decrease. (2 marks) A titration was carried out on a sample of lake water, suspected of being contaminated with acid soils, to determine its pH. A student placed a standardised solution of 0.005 molL⁻¹ NaOH in the burette. The student then titrated the NaOH solution against 50.0 mL samples of the lake water and obtained the following results. | | Trial 1 | Trial 2 | Trial 3 | Trial 4 | |------------------------------|---------|---------|---------|---------| | Final burette reading (mL) | 4.25 | 8.05 | 12.00 | 16.05 | | Initial burette reading (mL) | 0.00 | 4.10 | 8.10 | 12.05 | | Volume of NaOH used (mL) | 4.25 | 3.95 | 3.90 | 4.00 | Calculated titres in Table (1) (b) Determine the average volume of NaOH used. (2 marks) Ave Titre = $$\frac{3.95 + 3.90 + 4.00}{3}$$ = 3.95 mL (1) (c) Calculate the average number of moles of NaOH used to neutralise the acid. (1 mark) $$n = cV = 0.0050 \times 0.00395 = 1.98 \times 10^{-5} \text{ mol} \quad (3 \times SF)$$ (1) (d) Assuming that the lake water is the only source of H⁺ ions and that complete ionisation of the acid in the lake water has occurred, determine the pH of the lake water. (3 marks) $$n(H^+) = n(NaOH) = 1.975 \times 10^{-5} \text{ mol}$$ (1) $$[H^+] = n/V = 1.975 \times 10^{-5} / 0.050 = 3.95 \times 10^{-4} \text{ molL}^{-1}$$ (1) $$pH = -log[H^+] = -log (3.95 \times 10^{-4}) = 3.40$$ (3 x SF) (1) (e) Complete the following table (6 marks) | Equipment | What is it used for in this experiment? | | What should it be rinsed with before use? | |---------------|---|-----|---| | Burette | To deliver accurate volume of NaOH. | (1) | The NaOH solution. (1) | | Pipette | To measure 50.0 mL of lake water. | (1) | The lake water. (1) | | Conical flask | Where the titration reaction takes place. | (1) | Distilled water. (1) | Question 40 (23 marks) Citric acid has a formula of $C_6H_8O_7$ and is a weak triprotic acid. A student, Steve, was investigating the amount of citric acid present in a bottle of lemon juice concentrate. He decided to titrate 25.00 mL samples of the lemon juice against 0.998 mol L⁻¹ NaOH solution. The reaction for the equation is: $$3 \text{ NaOH(aq)} + C_6H_8O_7(aq) \rightarrow \text{Na}_3C_6H_5O_7(aq) + 3 H_2O(aq)$$ Steve's results are shown below. | | Titrations | | | | |----------------------|------------|-------|-------|-------| | | 1 | 2 | 3 | 4 | | Final Reading (mL) | 15.60 | 30.80 | 46.00 | 15.75 | | Initial Reading (mL) | 0.00 | 15.60 | 30.80 | 0.60 | | Titre (mL) | 15.60 | 15.20 | 15.20 | 15.15 | ## (a) Calculate the **concentration** of citric acid in the lemon juice (i) in moles per litre. (6 marks) | Description | Marks | |---|-------| | V(NaOH) = 15.20 mL (average of titre 2 and 3) = 0.01520 L | 1 | | n(NaOH) = 0.998 x 0.01520 = 0.01517 mol | 1 | | $n(C_6H_8O_7) = (1/3) \times n(NaOH)$ | 1 | | = 0.005057 mol | 1 | | $c(C_6H_8O_7) = 0.005057/0.0250 = 0.202 \text{ mol L}^{-1}$ | 1 | | 3 significant figures | 1 | | Total | 6 | (ii) as a percentage by mass (assume mass of 25.00 mL sample = 25.00 g). (3 marks) | Description | Marks | |--|-------| | $n(C_6H_8O_7)_{in\ 25\ mL} = 0.005057\ mol$ | 1 | | $m(C_6H_8O_7)_{in\ 25\ mL} = 0.005057\ x\ 192.124 = 0.9715\ g$ | 2 | | % by mass = (0.9743/25.0) x 100 = 3.89% | 1 | | Total | 4 | A second student, Claire, wanted to find out the citric acid concentration in a freshly squeezed lemon. As her lemon juice was less homogeneous that the bottled juice, she decided to carry out a 'back titration' to avoid having to measure out accurate aliquots of the lemon juice. Claire added an excess amount of an alkali, sodium hydroxide solution, to the lemon juice, and then titrated the excess sodium hydroxide against hydrochloric acid. 8.00 g of the lemon juice was mixed with 25.00 mL of 0.600 mol L⁻¹ NaOH_(aq) and stirred thoroughly. The resulting solution, containing the excess sodium hydroxide solution, was filtered and immediately titrated against 0.501 mol L⁻¹ hydrochloric acid, with 15.50 mL of the acid being required. (b) (i) Calculate the total number of moles of sodium hydroxide added to the 8.00 g of fresh lemon juice. (1 mark) | Description | Marks | |--------------------------------------|-------| | n(NaOH) = 0.600 x 0.025 = 0.0150 mol | 1 | | Total | 1 | (ii) Calculate the moles of excess sodium hydroxide, and hence calculate the number of moles of sodium hydroxide that reacted with the citric acid in the lemon juice. (3 marks) | Description | Marks | |--|-------| | $n(HCI) = 0.501 \times 0.0155 = 0.007766 \text{ mol}$ | 1 | | $n(NaOH)_{excess} = n(HCI) = 0.007766 \text{ mol}$ | 1 | | $n(NaOH)_{used} = 0.0150 - 0.007766 = 0.00723 \text{ mol}$ | 1 | | Total | 3 | (iii) Calculate the number of moles of the citric acid in the 8.00 g sample, and hence determine the percentage, by mass, of the citric acid in the fresh lemon juice. (4 marks) | Description | Marks | |--|-------| | $n(C_6H_8O_7) = (1/3) \times n(NaOH)_{used} = (1/3) \times 0.00723$
= 0.00241 mol | 2 | | $m(C_6H_8O_7)_{in\ 8.00g} = 0.00241 \times 192.124 = 0.4633 g$ | 1 | | % by mass = (0.4646 /8.00) x 100 = 5.79% | 1 | | 3 significant figures (required for full marks) | | | Total | 4 | (c) Explain, using equations and sketches of graphs as required, why Claire could have used a large range of possible indicators whereas Steve had to use an indicator, such as phenolphthalein, that had a basic endpoint. (5 marks) | Description | Marks | |--|-------| | Claire was titrating a strong acid with a strong base | 1 | | therefore, the pH change at the equivalence point was very significant (could show with graph) and a range of indicators will change colour within this large pH range | 1 | | Steve was titrating a weak acid with a strong base | 1 | | and the equivalence point was at a high pH due to the citrate ion being basic: | 1 | | $H_2O(aq) + C_6H_5O_7^{3-}(aq) \rightleftharpoons C_6H_6O_7^{-}(aq) + 3 OH^{-}(aq)$
or: $3 H_2O(aq) + C_6H_5O_7^{3-}(aq) \rightleftharpoons C_6H_8O_7(aq) + 3 OH^{-}(aq)$ | 1 | | Total | 5 |